This study presents significant advancements in passive radiative cooling (PRC), achieved using assembled hollow yttrium oxide spherical particles (AHYOSPs). We developed PRC films with enhanced optical properties by synthesizing micro-sized hollow Y2O3 particles and integrating them into a polydimethylsiloxane (PDMS) matrix. The findings revealed that AHYOSPs achieved a remarkable solar reflectance of 73.72% and an emissivity of 91.75%, significantly outperforming nano-sized yttrium oxide (NYO) and baseline PDMS. Field tests demonstrated that the AHYOSPs maintained their lowest temperature during daylight, confirming their superior cooling efficiency. Additionally, theoretical calculations using MATLAB indicated that the cooling capacity of AHYOSPs reached 103.77 W/m2, representing a substantial improvement over NYO and robustly validating the proposed nanoparticle assembly strategy. These results highlight the potential of structurally controlled particles to revolutionize PRC technologies, thereby offering a path toward more energy-efficient and environmentally friendly cooling solutions.
Loading....